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Abstract. The temperature dependence of the Debye–Waller factors of a 9.4 mol% Y2O3

stabilized cubic ZrO2 ceramic was studied in the range 4–1923 K using neutron powder
diffraction. It was found that the data could not be modelled on a harmonic Debye-like model
with an additive static disorder component but are significantly anharmonic. The anharmonic
thermal motion in this material is not confined to the usual fluorite third-order term for the
anion. It is shown that the temperature variation of the Debye–Waller factors is well modelled
by an isotropic fourth-order anharmonic vibration of both the cation and anion each with its own
additive static disorder component. The Debye temperature was determined as approximately
963 K which is much higher than the only known previous measurement. There is evidence that
the sample became non-stoichiometric during the measurements. The oxygen content appears
to follow an extrapolation of the ZrO2−x lower phase boundary of the Zr–O phase diagram.

Zirconia (ZrO2) has three ambient-pressure polymorphs with fluorite related cubic, tetragonal
and monoclinic structures. The monoclinic form is stable to 1443 K, the tetragonal form
between 1443 K and 2643 K and the cubic phase above 2643 K. Zirconia phases have
been widely utilized in ceramics of various kinds ranging from fast-ion conductors to
structural ceramics. The high-temperature phases are stabilized to room temperature by
the addition of other oxides such as Y2O3, MgO or CaO. Quite large additions of the
stabilizer are required to maintain the cubic phase to room temperature (e.g.>8 mol%
Y2O3) [1]. The addition of stabilizing oxides induces a number of complex local structural
changes including substitutional cations, vacant oxygen sites to maintain charge balance
and relaxations of both anions and cations around the vacant oxygen sites and substituent
cations. As the temperature is increased, the cubic phase becomes highly conducting due
to the high mobility of the O ions and the ready availability of vacant oxygen sites.

Because of the large ion relaxations, diffraction studies of CSZs invariably have large
displacement parameters or Debye–Waller factors given byB = 8π2〈u2〉 where〈u2〉 is the
mean-square displacement of an ensemble of atoms about the ideal crystallographic position.
In its simplest form, it is assumed the atom displacements are spherically distributed about
the mean position. The static (disorder) and dynamic (thermal) contributions toB cannot
be separated at a single temperature using an elastic diffraction technique (the ergodic
principle). However, it has been suggested [2–4] that, given a good model of the temperature
variation ofB due to thermal vibrations, the temperature dependence of the observedB

may be used to separate the magnitude of the average disorder and thermal displacements
(unfortunately without reference to directions). This technique has been applied to cubic
zirconia previously [4], where it was observed that in a 10 mol% Y2O3 ceramic, the rms
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displacement at 15 K was 0.33 and 0.22Å for the anion and cation respectively. A simple
Debye-like model was used to separate the thermal and static disorder, but unfortunately
the limited number of measurements lowered the quality of the result as discussed below.
A similar technique has recently been applied to line broadening in EXAFS data taken
between 10 K and room temperature [5].

This paper reports the results of neutron powder diffraction measurements taken from
a 9.5 mol% Y2O3 cubic zirconia sample between 4 and 1923 K. There is significant static
disorder at low temperatures in agreement with [4]. However, the temperature dependence
of the displacement parameters cannot be modelled as the sum of a Debye-like thermal
vibration and an additive static disorder term. To model the experimental results, it is
necessary to use a fourth-order anharmonic term, or to allow the static disorder term to
decay as a function of temperature.

The sample was prepared by milling a 9.4 mol% Y2O3–ZrO2 powder for 14 hours
using a cubic zirconia vial and balls in a Spex 8000 mixer-mill. The milled powder was dry
pressed at 100 MPa followed by pre-firing at 1550◦C for 2 hours. Neutron diffraction data
were collected on the Medium Resolution Powder Diffractometer (MRPD) at the Australian
Nuclear Science and Technology Organization’s HIFAR reactor. The sample was heated
from room temperature to 1923 K in a series of steps with neutron data collected at constant
temperature after each temperature increment. This procedure was repeated during cooling
with a further pattern collected at 4 K using a three-stage He displex. Data from the
heating part of the cycle indicate that sintering was incomplete until temperatures greater
than 1873 K and so the analysis here is focused on data taken during cooling. Raw data
are in the form of scans from 4◦ to 138◦ 2θ in 0.1◦ steps using a neutron wavelength of
1.664(2)Å. Each scan took approximately 2 hours.

The sample was single phase and cubic at all temperatures during cooling. A crystal
structure model was refined for each temperature using the Rietveld analysis program LHPM
[6, 7]. The analysis proceeded by refinement of a second-order polynomial background
correction and diffractometer zero error. In the perfect fluorite aristotype, the lattice
parameter and displacement parameters are the only free variables. Because of our interest
in the thermal behaviour and displacement parameters, the oxygen site occupancy (NO) was
also refined according to two models. In model 1, the occupancy of both the Zr/Y and the
O site were refined but they were constrained to conform to a ‘charge balance only’ vacancy
mechanism in which one O vacancy is created for each Y2O3 formula unit added. Model 2
constrains the Zr/Y ratio to conform to the known sample stoichiometry, but allows the O
occupancy to vary freely. A typical fit is shown in figure 1.

The refined parameters for both structure models and the agreement indicesRwp andRB
[6] are given in table 1. The lattice parameters may be used to extract thermal expansion
data. Above 773 K the expansion is relatively linear and is well modelled by the expression

a = 5.101 56+ 6.5000× 10−5T (1)

leading to a linear coefficient of thermal expansion (q to avoid confusion with the
force constantα) of q = 1.258× 10−5 and a volume coefficient of thermal expansion
χ = 3.774×10−5. These data agree well with literature values [8] except for a small offset
due to uncertainty in the neutron wavelength.

At low temperature, both structure models are the same. The oxygen occupancy,
expressed as the number of oxygen ions per cation, refines to a value in excellent agreement
with that expected for charge balance. At temperatures of 773 K and above however, the
occupancy appears to decline as a function of temperature and the agreement indexRB for
model 2 is significantly better than for model 1. This behaviour is summarized in figure 2.
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Figure 1. Plotted output from Rietveld refinement of model 2 for the data collected at 1923 K.
The raw data are plotted as (+), the calculated profile and difference profile as solid lines and
reflection markers as vertical bars below the data.

Table 1. Refined structure and displacement parameters.

Model 1 Model 2

T (K) a (Å) BZr/Y (Å2) BO (Å2) Rwp (%) RB (%) BZr/Y (Å2) BO (Å2) NO Rwp (%) RB (%)

4 5.1298(2) 0.77(4) 2.32(5) 7.0 0.9 0.77(5) 2.32(7) 1.91(2) 7.0 0.9
295 5.1365(2) 1.02(4) 2.53(5) 8.3 1.3 1.02(5) 2.53(7) 1.91(2) 8.3 1.3
773 5.1536(2) 1.08(4) 2.90(8) 7.7 2.8 1.21(7) 2.69(11) 1.82(6) 7.7 2.2
873 5.1597(2) 1.19(5) 3.09(7) 6.6 2.7 1.28(6) 2.96(9) 1.85(3) 6.6 2.4
973 5.1652(2) 1.30(5) 3.22(7) 6.3 2.5 1.41(6) 3.06(9) 1.84(3) 6.3 2.1

1073 5.1710(2) 1.40(5) 3.35(7) 6.1 2.6 1.52(6) 3.17(9) 1.82(3) 6.1 2.1
1173 5.1773(2) 1.50(5) 3.67(7) 6.0 2.2 1.63(6) 3.47(10) 1.82(3) 6.0 1.7
1273 5.1835(2) 1.76(5) 3.84(4) 5.9 2.1 1.86(7) 3.69(10) 1.84(3) 5.9 1.8
1373 5.1905(2) 1.84(5) 4.02(8) 6.1 2.5 2.00(7) 3.76(11) 1.80(3) 6.1 1.9
1423 5.1935(2) 1.95(5) 4.12(8) 6.1 2.4 2.19(7) 3.74(11) 1.76(3) 6.0 1.4
1473 5.1969(2) 1.97(5) 4.23(8) 5.9 1.8 2.09(7) 4.04(11) 1.83(3) 5.9 1.3
1523 5.1998(2) 1.99(5) 4.32(8) 5.8 2.3 2.20(7) 3.99(11) 1.78(3) 5.8 1.4
1573 5.2031(2) 2.03(5) 4.46(9) 5.8 2.2 2.13(7) 4.29(12) 1.84(3) 5.8 1.8
1623 5.2068(2) 2.06(6) 4.38(9) 6.0 2.9 2.28(8) 4.02(12) 1.78(3) 5.4 2.0
1673 5.2097(2) 2.17(6) 4.63(9) 5.8 2.7 2.46(8) 4.13(13) 1.73(3) 5.8 1.5
1723 5.2132(2) 2.34(6) 4.85(9) 5.5 3.2 2.63(8) 4.35(13) 1.73(3) 5.4 2.0
1823 5.2197(2) 2.42(6) 5.15(9) 5.4 3.2 2.68(8) 4.68(13) 1.75(3) 5.3 2.2
1923 5.2265(2) 2.63(6) 5.45(10) 5.1 3.2 2.97(8) 4.84(13) 1.71(3) 4.8 1.9

The solid line indicates the oxygen content derived from a linear extrapolation of the lower
phase boundary of ZrO2−x on the Zr–O phase diagram [9, 10]. Whilst the agreement is good,
these results should at this stage be treated with caution because of (i) the small number of
reflections used in this work (12), (ii) the high correlation coefficient between the oxygen
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occupancy and displacement parameters (73%) and (iii) the relatively wide scatter of the
data in figure 2. Testing of whether the ‘missing’ oxygens are localized in the region of
( 1

2, 1
2, 1

2) resulted in a poorer fit and negative occupancy at (1
2, 1

2, 1
2). In summary, we do

have some confidence in model 2, but are unwilling to abandon the conventional wisdom
until it has been tested by further work. Hence, in all of the following analyses,B values
refined using the stoichiometric structure model 1 were used. Our conclusions are unaltered
if B values from model 2 are used although the numerical values of some fitted parameters
change slightly.

Figure 2. Number of oxygen ions per cation derived from model 2 as a function of temperature
(•). The line shows values derived from an extrapolation of the lower phase boundary of
ZrO2−x on the Zr–O phase diagram to lower temperatures.

Refinement of the oxygenx co-ordinate, allowing anion displacements along〈111〉
according to a literature model [11] was also conducted. This approximates a third-order
anharmonic term (see below) and does not improve the fit at elevated temperatures (e.g.
RB = 2.9% at 1923 K).

The observedB values are quite large at 4 K (2.3 and 0.8 Å2 for oxygen and
zirconium/yttrium respectively) and can be seen to increase strongly with temperature. The
experimentalvalue of the mass-weighted mean displacement parameter for a poly-atomic
unit cell of k atoms with total massM, individual massesmk and individual displacement
parametersBk may be approximated by:

BM = 1

M

k∑
1

mkBk. (2)

To account for ion relaxation around substitutional Y ions and vacant O sites, we assume they
may be modelled with a Gaussian distribution characterized by a ‘disorder’ displacement
parameterBD which is additive [3, 4]. The observed displacement parameter is then
expected to conform to:

BM = BDM + BTM. (3)

In our initial model, thecalculatedvalue of the thermal part of the displacement parameters
BT relied on the Debye approximation (see for example [11]). For the mass-weighted
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average,BM , the model was modified for a poly-atomic unit cell by using the average mass
of an atom in the structure in Debye’s original monatomic equation [4].

The Debye model gives a poor fit to the observed displacement parameters (both
individual and mass weighted average) due to significant atom displacement at low
temperature. A sample fit, forced to agree at high temperature, is shown in figure 3(a).
The one variable parameter in this fit, the Debye temperature (θD), takes the value 403 K.
If a static disorder component is added (equation (3)) a fit similar to figure 3(b) is obtained.
It too fits poorly although it gives us a coarse estimate ofBDM = 1 Å2 representing〈u2〉1/2,
averaged over both cations and anions, of 0.2Å. For this model to fit would requireBDM to
change with temperature like the dashed line in figure 3(a).

The model may be taken further by assuming that the thermal motion is anharmonic.
As a simple approximation, the isolated (average) atom potential for an atom in a cubic
material at 0 K may be expanded to fourth order as [12]

V = V0+ 1
2αu

2+ βu1u2u3+ γ u4+ δ(u4
1+ u4

2+ u4
3− 3

5u
4) (4)

whereα, β, γ andδ are force constants,u1, u2 andu3 are the root mean square displacements
along the three principal axes andu2 = (u2

1 + u2
2 + u2

3). The first two terms are the usual
harmonic approximation followed by the third-order (anisotropic) and two fourth-order terms
(isotropic and anisotropic).

Perfect fluorite structures are known to undergo cubic anharmonic vibration of the
anion [12]. The cation has in the past been assumed to behave quasi-harmonically. Rietveld
refinement of anion displacement along〈111〉 did not improve the fit indicating that the cubic
term for the anion is likely to be small. The cation is geometrically unlikely to execute
third-order anharmonic motion and so we may neglect the cubic term. The anisotropic
fourth-order term is generally small [12] and so our model consists of the harmonic and
isotropic fourth-order terms only. Expansion of an expression for the intensity of a Bragg
reflection in a powder pattern leads to:

I = S|F |2JLA exp

(
− BAn sin2 θ

λ2

)
(5)

whereS is the scale factor,F the structure factor,J the multiplicity,L the Lorentz factor
andA the absorption factor.BAn is the anharmonic displacement parameter which, for the
restricted case outlined above, is a simple second-order expansion inT given by [12]:

BAn = BT (1+ T [2χγG − 20kBγ /α
2]). (6)

γG is the Gr̈uneisen parameter andχ the volume coefficient of thermal expansion. The term
involving these constants represents the quasi-harmonic correction for thermal expansion.
There are insufficient intensity data to explicitly incorporate the anharmonic correction into
calculated Bragg intensities. We do however have sufficient data to test the temperature
dependence predicted by equation (6).

BD may be included to take account of the disorder component giving:

BAn = BD + BT (1+ T [2χγG − 20kBγi/α
2
i ]) (7a)

for i individual atoms and

BAnM = BDM + BTM(1+ T [2χγG − 20kBγM/α
2
M ]) (7b)

for the mass weighted average. Figure 3(c) shows that the fit to this model is very good
for the mass weighted averageB and figure 3(d) does likewise for the individualB values.
The adjustable parameters in the fitting are the static disorder componentBD, a Debye
temperature contained inBT and the temperature coefficientC = 2χγG − 20kBγ /α2. The
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Figure 3. (a) A Debye modelBTM of the mass weighted average displacement parameter
constrained to fit the high-temperature data. Note that there is a substantial disorder component
BD visible at low temperature. The dashed line represents the difference between the calculated
and observed values. (b) Fit ofBM = BTM + BDM to the data. Note the poor agreement,
especially at high temperature. (c) Fit ofBAnM = BDM + BTM(1+ T [2χγG − 20kBγ /α2]) to the
data forBM . (d) Fit of BAnZr/Y = BDZr/Y + BTZr/Y (1+ T [2χγG − 20kBγZr/α2

Zr ]) to BZr/Y , and

BAnO = BDO + BTO(1+ T [2χγG − 20kBγ0/α
2
0]) to BO .
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coefficientC may be decomposed to give the value ofγ if χ1 (known from lattice parameter
measurements),γG and α are known. The value ofα was estimated from the harmonic
component making use of

α = kBT /〈u2〉 (8)

and the high-temperature limit of the Debye approximation

〈u2〉 = 3h̄2T

mkBθ
2
D

(9)

to give

α = mk2
Bθ

2
D

3h̄2 (10)

whereh̄ is Planck’s constant divided by 2π , m is the ionic mass,kB is Boltzmann’s constant
andθD is the Debye temperature. The Grüneisen parameter,γG, was estimated from specific
heat data [13] using

γG = χVBT

CV
(11)

whereχ is the volume coefficient of thermal expansion,CV is the specific heat at constant
volume,V the molar volume andBT the bulk modulus, calculated fromBT = E/3(1−2ϑ)
using Young’s modulusE = 200 GPa and Poisson’s ratioϑ = 0.27. A value forCV of
87.5 J mol−1 K−1 was used [13] resulting inγG = 1.32. A second method is to use the
elastic compliances (from [14]) and the specific heat at constant pressure (Cp) via

γG = V q

Cp(S11+ S12)
(12)

leading to an estimate ofγG = 1.4. The average of these values,γG = 1.37, was used in
later calculations.

Table 2 contains the values ofBD, 〈u〉D, θD, α andγ obtained from the fitting procedure
for individual ions and for the mass weighted mean.

Table 2. Thermal coefficients and force constants.

Ion BD (Å2) 〈u〉D (Å) ‘ θD ’ (K) α (J m−2) γ (J m−4)

Mass weighted mean 1.07 0.12 963 358 −6.46× 1023

Zr4+/Y3+ 0.70 0.09 694 416 −2.67× 1023

O2− 2.3 0.17 1440 302 −1.30× 1024

The values forBD, 〈u〉D, α, θD and γ are self-consistent in that those for the mass
weighted mean are intermediate to the two individual ions. The values ofθD for the
individual ions may be considered as tools for fitting only but have no great physical
significance. Our best estimate for the Debye temperatureθD (963 K) is obtained from
fitting the data to equation (7a). This is more than 400 K larger than that determined
by Argyriou in earlier work [4], apparently because the final point in the restricted data
set used for that work appears anomalously low if superimposed on these results. Whilst
the exact value should still be regarded with some caution because of the assumptions
made in the model, this value ofθD is considered more precise than the previous one
because of the far greater temperature range covered and the smaller temperature interval
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Figure 4. Isolated atom potentials at 0 K calculated for (a) anions, (b) cations and (c) a mass
weighted average ion. Solid lines represent the anharmonic model and the dashed lines show
the corresponding harmonic components.

between measurements. We know of no other estimates ofθD for this material for
comparison.

The final step in this analysis is to examine the isolated atom potentials generated by
the force constantsα andγ ,

V = V0+ 1
2αu

2+ γ u4. (13)

Figure 4 shows the generated potentials for the individual and mass weighted average fits
as well as the corresponding harmonic componentV = V0+ 1

2αu
2. The apparent departure

from harmonic behaviour is very large and must be put into context by recalling the complex
local structures in this material. In the current sample, approximately 4.7% of all oxygen
sites are vacant at room temperature, possibly rising to>13% at 1923 K if structure model 2
is correct. This means that on average, one expects almost every other unit cell to contain
a vacancy at room temperature, possibly rising to almost one per cell at high temperature.
The local environment of individual ions is quite different and as such, the concept of
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a single characteristic potential for each ion species, as is usual in studies of anharmonic
thermal motion, has little validity. In this regard, we feel the use of an isotropic anharmonic
correction is well justified, though we believe that no great significance may be attached to
the actual potentials derived therefrom.

The validity of structure model 2, indicating greatly reduced oxygen concentration at
elevated temperatures, also requires further consideration. First, we may postulate that the
‘missing’ O ions represent the mobile oxygen ion population responsible for the high ionic
conductivity of this material. This would require more O diffusing than there are formal
vacancies available, by a factor of approximately 2:1, perhaps making use of the octahedral
site (1

2, 1
2, 1

2) as suggested by the molecular dynamics calculations of Shimojo and Okazaki
[15]. This model was tested during the Rietveld refinement procedure and does not appear
to fit the data.

Second, the missing O may genuinely represent increasing non-stoichiometry with
increasing temperature. The zirconium–oxygen phase diagram [9, 10] shows extensive
non-stoichiometry of the cubic phase at temperatures between 1750 and 3000 K which
demonstrates the stable existence of lower valence states of zirconium. Similar lower
valence states occur in the thorium–oxygen, titanium–oxygen and cerium–oxygen systems.
It is not known what effect the addition of Y2O3 has on the formation of lower valence
states in zirconia; however in general the effect is to depress the phase boundaries to lower
temperature and our data appear to lie on an extrapolation of the lower phase boundary.
We have no independent measure of the oxygen concentration for comparison.

In closing, it should be noted that it was our intention to use these results to make contact
with computational (lattice statics and molecular dynamics) and experimental (neutron and
x-ray scattering, EXAFS) studies of the ion relaxations in cubic zirconia. However during
the compilation of a recent review [16] general disagreement over the precise local structures
in this material became apparent. Should the additional oxygen vacancies suggested by
model 2 be confirmed in later work, much of the computational and modelling work based
on a fixed stoichiometry will need to be re-evaluated.
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